Granica ciągu - to liczba do której dążą kolejne wyrazy ciągu. W tym nagraniu pokazuję jak liczyć granice z ciągów niewymiernych. Czas nagrania: 17 min.
Spis treści1. Co to jest ciąg liczbowy?2. Ciągi ograniczone3. Ciągi monotoniczne4. Ciąg arytmetyczny5. Ciąg geometryczny6. Granice Granice właściwe i niewłaściwe - definicje7. Jak liczyć granice właściwe ciągów? Granice ciągów - podstawowe Twierdzenie o trzech Granica iloczynu ciągu ograniczonego i ciągu zbieżnego do zera8. Twierdzenie o dwóch ciągach9. Symbole Jak pozbyć się symboli nieoznaczonych?10. Jak liczyć granice niewłaściwe ciągów?11. Jak liczyć granice ciągów w kalkulatorze Sprawdź swoją wiedzę o ciągach liczbowych - zadania kontrolne1. Co to jest ciąg liczbowy?Ciągi liczbowe najczęściej oznacza się symbolami:\[(a_n),\,\,\,(b_n),\,\,\,(c_n),\,\,\,\textrm{itd.}\] Oto kilka przykładów:Ciąg \(a_n\) jest skończony, ponieważ zawiera tylko pięć wyrazów (liczb):\[(a_n)=(1,\,2,\,3,\,4,\,5)\]Ciąg \(b_n\) zawiera tylko dwie liczby:\[(b_n)=(\sin(1),\,\sin(3))\]Ciągi \(c_n\) i \(d_n\) są nieskończone, ponieważ zawierają nieskończenie wiele liczb (oznaczamy to trzema kropkami na końcu ...):\[(c_n)=\left(-\frac{1}{4},\,\frac{1}{4},\,-\frac{1}{4},\,\frac{1}{4},...\right)\]\[(d_n)=\big(-2\sqrt{2},\,-4\sqrt{2},\,-8\sqrt{2},...\big)\]Więcej przykładów ciągów znajdziesz w internetowej encyklopedii ciągów liczbowych (spróbuj wpisać kilka liczb po przecinku, kliknij "Search" i zobacz czy Twój ciąg został już przez kogoś "wynaleziony" ;-)Ciąg liczbowy to funkcja odwzorowująca zbiór liczb naturalnych w zbiór liczb rzeczywistych, a tak po ludzku to poprostu ponumerowany zbiór elementów (liczb).Wyrazy ciągu liczbowego (czyli jego elementy) oznaczamy przez:\[a_1,\,a_2,\,a_3,\,a_4,...\]\[b_1,\,b_2,\,b_3,\,b_4,...\]Dla przykładu pierwszy wyraz ciągu \((a_n)=(1,2,3,4,5,...)\), to \(a_1=1\), piąty wyraz to \(a_5=5\), setny wyraz to \(a_{100}=100\).Ciągi liczbowe można określać na różne sposoby:1. za pomocą wzoru, (tzw. wzór ogólny ciągu) - podaje się jeden ogólny przepis na każdy z wyrazów ciągu: Przykład 1\[a_n=n\,-\,\textrm{wzór ciągu}\]Wzór ciągu stanowi przepis jak tworzyć kolejne wyrazy, zobacz sam (bierzemy \(n=1,2\) i \(n=100\)):\[a_1=1,\,\,\,a_2=2,\,...,\,a_{100}=100\]Przykład 2\[b_n=\sin(2n-1)\,-\,\textrm{wzór}\]Chcąc zapisać jakiś wyraz ciągu musimy zastąpić indeks \(n\) konkretną liczbą:\[b_1=\sin(1),\,\,\,b_2=\sin(3),\,\,\,b_3=\sin(5),\,\,\,b_4=\sin(7),\,...,\,b_{9}=\sin(2\cdot 9-1)=\sin(17)\]Przykład 3\[c_n=\frac{(-1)^n}{4}\,-\,\textrm{wzór}\]Ciąg może mieć wyrazy różniące się tylko znakiem (plus, minus):\[c_1=-\frac{1}{4},\,\,\,c_2=\frac{1}{4},\,\,\,c_3=-\frac{1}{4},\,\,\,c_4=\frac{1}{4},\,...,\,c_{31}=\frac{(-1)^{31}}{4}=-\frac{1}{4}\]Przykład 4\[d_n=-2^n\sqrt{2}\,-\,\textrm{wzór}\]Kilka wyrazów ciągu:\[d_1=-2\sqrt{2},\,\,\,d_2=-4\sqrt{2},\,\,\,d_3=-8\sqrt{2},\,...,\,d_{10}=-2^{10}\sqrt{2}\]2. rekurencyjnie - podaje się jeden lub kilka pierwszych wyrazów ciągu, a każdy następny wyraz można zapisać za pomocą poprzednich wyrazów Przykład 1Ciąg arytmetyczny\[a_1=2,\,\,\,a_{n+1}=a_n+1\]Pierwszy wyraz jest ustalony i wynosi 1. Każdy następny wyraz ciągu (zaczynając od drugiego) tworzymy przez dodanie liczby 1 do poprzedniego wyrazu:\[a_1=2,\,\,\,a_2=a_1+1=2+1=3,\,\,\,a_{3}=a_{2}+1=3+1=4\]Przykład 2Ciąg geometryczny:\[b_1=-2\sqrt{2},\,\,\,b_{n+1}=2 b_n\]Pierwszy wyraz ciągu geometrycznego jest podany (np. \(-2\sqrt{2}\)), każdy następny wyraz (począwszy od drugiego) tworzymy przez pomnożenie poprzedniego wyrazu przez jakąś liczbę (np. 2):\[b_1=-2\sqrt{2},\,\,\,b_2=2b_1=-4\sqrt{2},\,\,\,d_3=-8\sqrt{2},\,...,\,d_{10}=-2^{10}\sqrt{2}\]Przykład 3Ciąg Fibbonaciego:\[c_1=1,\,\,\,c_2=1,\,\,\,c_{n+2}=c_{n+1}+c_{n}\]Pierwsze dwa wyrazy są równe 1, każdy następny wyraz poczynając od trzeciego jest równy sumie dwóch poprzednich:\[c_1=1,\,\,\,c_2=1,\,\,\,c_3=c_2+c_1=1+1=2,\,\,\,c_{4}=c_3+c_2=2+1=3\]3. opisowo, poprzez podanie (słownie) własności jednoznacznie określającej ciąg: Przykład\[a_n\,-\,\textrm{n-ta liczba pierwsza}\]\[a_1=2,\,\,\,a_2=3,\,\,\,a_3=5,\,\,\,a_4=7,\,\,\,a_5=11,\,\,\,a_6=13,\,\,\,a_7=17\]4. wypisując wyrazy ciągu - sprawdza się szczególnie w przypadku ciągów skończonych: PrzykładyCiągi skończone:\[\left(1,1,1,1,1\right)\]\[\left(\pi,-2\pi,e,e^\pi,\pi^e\right)\]Ciągi nieskończone:\[\left(1,1,1,1,1,...\right)\]Przy takim opisie ciągu nieskończonego, musimy się domyślić jak wyglądają dalsze wyrazy powyższym przykładzie wszystkie wyrazy ciągu są równe 1.\[\left(1,-1,1,-1,1,-1,...\right)\]Wyrazy powyższego ciągu to na przemian 1 i Ciągi liczbowe, podobnie jak pochodne i granice funkcji, są jednym z podstawowych zagadnień analizy Ciągi ograniczoneCiąg liczbowy \((a_n)\) jest ograniczony z dołu, gdy wszystkie jego wyrazy są większe od pewnej liczby rzeczywistej \(D\), czyli: \[\exists\, D\in\mathbb{R}\,\,\forall\, n\in\mathbb{N}\](istnieje liczba rzeczywista \(D\), taka, że dla każdej liczby naturalnej \(n\) zachodzi nierówność) \[a_n\ge D\]PrzykładCiąg \(a_n=n\) jest ograniczony z dołu, ponieważ:\[a_n=n\ge 1=D,\,\,\,\textrm{dla każdego}\,n\in\mathbb{N}\]Aby to lepiej zrozumieć, wypiszmy kilka wyrazów tego ciągu:\[a_1=1,\,a_2=2,\,a_3=3,\,a_4=4,...\]Widać, że ciąg "startuje" od liczby 1 i ciągle się zwiększa, więc na pewno każdy jego wyraz jest większy (bądź równy) od \((a_n)\) jest ograniczony z góry, gdy wszystkie jego wyrazy są mniejsze od pewnej liczby rzeczywistej \(G\), czyli: \[\exists\, G\in\mathbb{R}\,\,\forall\, n\in\mathbb{N}\] (istnieje liczba rzeczywista \(G\), taka, że dla każdej liczby naturalnej \(n\) zachodzi nierówność) \[a_n\le G\]PrzykładCiąg \(a_n=1-n\) jest ograniczony z góry, ponieważ:\[a_n=1-n\le 0=G,\,\,\,\textrm{dla każdego}\,n\in\mathbb{N}\]Aby to lepiej zrozumieć, wypiszmy kilka wyrazów tego ciągu:\[a_1=0,\,a_2=-1,\,a_3=-2,\,a_4=-3,...\]Widać, że ciąg "startuje" od liczby 0 i się zmniejsza, więc na pewno każdy jego wyraz jest mniejszy (bądź równy) od \((a_n)\) jest ograniczony, gdy wszystkie jego wyrazy są większe od pewnej liczby rzeczywistej \(D\) i jednocześnie mniejsze od pewnej liczby rzeczywistej \(G\), czyli gdy jest jednocześnie ograniczony z dołu i z góry: \[\exists\, D,G\in\mathbb{R}\,\,\forall\, n\in\mathbb{N}\] (istnieją liczby rzeczywiste \(D\) i \(G\), takie, że dla każdej liczby naturalnej \(n\) zachodzą nierówności)\[D\le a_n\le G\]PrzykładCzy ciąg \(a_n=\frac{1}{n}\) jest ograniczony?Krok 1Warto wypisać sobie kilka wyrazów ciągu:\[a_1=\frac{1}{1}=1,\,\,a_2=\frac{1}{2},\,\,a_3=\frac{1}{3},\,\,\,a_4=\frac{1}{4}\]Krok 2Widać, że ciąg jest ograniczony z góry przez liczbę \(G=1\), czyli:\[a_n=\frac{1}{n}\le 1=G,\,\,\textrm{dla każdego}\,\,n\in\mathbb{N}\]Krok 3Można też zauważyć, że wyrazy ciągu \(a_n\) są coraz mniejsze wraz ze wzrostem indeksu n, jednak są zawsze większe od \(D=0\), czyli:\[a_n=\frac{1}{n}> 0=D,\,\,\textrm{dla każdego}\,\,n\in\mathbb{N}\]Dlatego ciąg \(a_n=\frac{1}{n}\) jest ograniczony z dołu przez \(D=0\).Ktok 4Ciąg \(a_n=\frac{1}{n}\) jest ograniczony z dołu i z góry, zatem jest Ciągi monotoniczneMonotoniczność ciągu oznacza, że ciąg jest stały lub rosnący lub niemalejący lub malejący lub liczbowy \((a_n)\) jest stały, gdy jego wyrazy pozostają takie same wraz ze wzrostem wartości indeksu \(n\): \[a_1=a_2=a_3=...\] czyli \[\forall\, n\in\mathbb{N}\] (dla każdej liczby naturalnej \(n\) zachodzi równość) \[a_n=a_{n+1}\]Przykład\[a_n=1\,-\,\textrm{ciąg stały}\]ponieważ dla każdego \(n\in \mathbb{N}\) mamy:\[a_n=1=a_{n+1}\]np. dla \(n=1\) mamy:\[a_1=1=a_{2}\]Ciąg liczbowy \((a_n)\) jest rosnący, gdy jego wyrazy zwiększają się wraz ze wzrostem wartości indeksu \(n\): \[a_1a_2>a_3>...\] czyli \[\forall\, n\in\mathbb{N}\] (dla każdej liczby naturalnej \(n\) zachodzi nierówność) \[a_n> a_{n+1}\]Przykład\[a_n=\frac{1}{n}\,-\,\textrm{ciąg malejący}\]ponieważ dla każdego \(n\in \mathbb{N}\) mamy:\[a_n=\frac{1}{n}>\frac{1}{n+1}=a_{n+1}\]np. dla \(n=3\) mamy:\[a_3=\frac{1}{3}>\frac{1}{4}=a_{4}\]Ciąg liczbowy \((a_n)\) jest nierosnący, gdy jego wyrazy zmniejszają się ub pozostają niezmienione (równe) wraz ze wzrostem wartości indeksu \(n\): \[a_1\ge a_2\ge a_3\ge ...\] czyli \[\forall\, n\in\mathbb{N}\] (dla każdej liczby naturalnej \(n\) zachodzi nierówność) \[a_n\ge a_{n+1}\]Przykład\[a_n=-n\,-\,\textrm{ciąg nierosnący}\]ponieważ dla każdego \(n\in \mathbb{N}\) mamy:\[a_n=-n\ge -(n+1)=a_{n+1}\]np. dla \(n=4\) mamy:\[a_4=-4\ge -5=a_{5}\]Istnieje też pojęcie monotoniczności w ścisłym sensie, co oznacza, że ciąg jest rosnący lub sprawdzić monotoniczność ciągu w praktyce?Monotoniczność ciągu \((a_n)\) możesz ustalić analizując znak różnicy\[a_{n+1}-a_n\]lub, gdy ciąg \(a_n\) ma wyrazy dodatnie badając relację między liczbą 1, a wyrażeniem\[\frac{a_{n+1}}{a_n}\]Ciąg \((a_n)\) jest rosnący, gdy\[a_{n+1}-a_n>0\]lub gdy \(a_n>0\) dla każdego \(n\in\mathbb{N}\) oraz\[\frac{a_{n+1}}{a_n}>1\]Ciąg \((a_n)\) jest niemalejący, gdy\[a_{n+1}-a_n\ge 0\]lub gdy \(a_n>0\) dla każdego \(n\in\mathbb{N}\) oraz\[\frac{a_{n+1}}{a_n}\ge 1\]Ciąg \((a_n)\) jest malejący, gdy\[a_{n+1}-a_n0\) dla każdego \(n\in\mathbb{N}\) oraz\[\frac{a_{n+1}}{a_n}0\) dla każdego \(n\in\mathbb{N}\) oraz\[\frac{a_{n+1}}{a_n}\le 1\]PrzykładJak wykazać, że ciąg \(a_n=\frac{1}{n+1}\) jest malejący?Sposób ISprawdzamy jaki jest znak wyrażenia \(a_{n+1}-a_n\), tj.\[a_{n+1}-a_n=\frac{1}{(n+1)+1}-\frac{1}{n+1}=\frac{n+1}{(n+1)(n+2)}-\frac{n+2}{(n+1)(n+2)}=\]\[=\frac{n+1-(n+2)}{(n+1)(n+2)}=\frac{n+1-n-2}{(n+1)(n+2)}=\frac{-1}{(n+1)(n+2)}0\)malejący, gdy \(r0\) i \(q>1\) lub \(a_11\) lub \(a_1>0\) \(00\) istnieje \(n_0\in\mathbb{R}\), takie, że dla każdego \(n\in\mathbb{N}\) i \(n>n_0\):\[|a_n-g|0\) istnieje \(n_0\in\mathbb{R}\), takie, że dla każdego \(n\in\mathbb{N}\) i \(n>n_0\):\[a_n>\epsilon\]Ciąg \((a_n)\) jest zbieżny do granicy niewłaściwej \(-\infty\), czyli\[\lim\limits_{n\to \infty}a_n=-\infty\]wtedy i tylko wtedy, gdy dla każdego \(\epsilon>0\) istnieje \(n_0\in\mathbb{R}\), takie, że dla każdego \(n\in\mathbb{N}\) i \(n>n_0\):\[a_n0\]\[\lim\limits_{n\to\infty} \frac{1}{n}=0\]Granica z silnią:\[\lim\limits_{n\to\infty} \frac{A^n}{n!}=0,\,\,\,\textrm{dla}\,\,\,\,A>0\]\[\lim\limits_{n\to\infty} \frac{1}{n!}=0\]Granica pierwiastka n-tego stopnia z n:\[\lim\limits_{n\to\infty} \sqrt[n]{n}=1\]Granica pierwiastka n-tego stopnia z liczby dodatniej:\[\lim\limits_{n\to\infty} \sqrt[n]{A}=1,\,\,\,\textrm{dla}\,\,\,A>0\]Granice nieskończone:\[\lim\limits_{n\to\infty} n^p=\infty,\,\,\,\textrm{dla}\,\,\,p>0\]\[\lim\limits_{n\to\infty} n=\infty\]\[\lim\limits_{n\to\infty} n^n=\infty\]Granice ciągu geometrycznego:\[\lim\limits_{n\to\infty} A^n=\infty,\,\,\,\textrm{dla}\,\,\,A>1\]\[\lim\limits_{n\to\infty} A^n=0,\,\,\,\textrm{dla}\,\,\,|A|n_0\]oraz\[\lim\limits_{n\to \infty} a_n=\lim\limits_{n\to \infty}c_n=g\]to\[\lim\limits_{n\to \infty}b_n=g\]Przykład:Wykarzemy, że granica ciągu \(\frac{\sin n}{n^2}\) jest równa 0, czyli:\[\lim\limits_{n\to \infty}\frac{\sin n}{n^2}=0\]Zauważmy, że dla wszystkich \(n\in \mathbb{N}\):\[\frac{-1}{n^2}\le \frac{\sin n}{n^2}\le \frac{1}{n^2}\]ponieważ \(\sin(n)\in[-1,1]\), ponadto:\[\lim\limits_{n\to \infty}\frac{-1}{n^2}=\lim\limits_{n\to \infty}\frac{1}{n^2}=0\]Zatem z Twierdzenia o 3 ciągch mamy:\[\lim\limits_{n\to \infty}\frac{\sin n}{n^2}=0\]Poniżej znajdziesz przykłady ciągów występujących w graniacach, które można obliczyć przy użyciu twierdzenia o 3 ciągch:\[-1\le \sin n\le 1,\,\,\,n\in\mathbb{N}\]\[-1\le \cos n\le 1,\,\,\,n\in\mathbb{N}\]\[-\frac{\pi}{2}\le arctg\, n\le \frac{\pi}{2},\,\,\,n\in\mathbb{N}\]\[0\le arcctg\, n\le \pi,\,\,\,n\in\mathbb{N}\] Granica iloczynu ciągu ograniczonego i ciągu zbieżnego do zeraZ twierdzenia o trzech ciągach wynika następujący przydatny fakt:Jeżeli ciąg \((a_n)\) jest ograniczony, a ciąg \((b_n)\) jest zbieżny do zera, czyli\[\lim\limits_{n\to \infty}b_n=0\]to\[\lim\limits_{n\to \infty}a_n b_n=0\]Powyższe twierdzenie można udowodnić następująco. Zauważmy, że, gdy ciąg \((a_n)\) jest ograniczony, to istnieją stałe \(D\) i \(G\), takie, że:\[D\le |a_n| \le G\]Stąd\[D|b_n|\le |a_n\cdot b_n|\le G|b_n|\]Obliczmy teraz granice ciągów ograniczających:\[\lim\limits_{n\to \infty} D|b_n|=D\lim\limits_{n\to \infty} |b_n|=0\]\[\lim\limits_{n\to \infty} G|b_n|=G\lim\limits_{n\to \infty} |b_n|=0\]ponieważ \(\lim\limits_{n\to \infty} |b_n|=0\), wtedy i tylko wtedy, gdy \(\lim\limits_{n\to \infty} b_n=0\).Zatem na mocy twierdzenia o 3 ciągach:\[\lim\limits_{n\to \infty} |a_n b_n|=0\]co jest równoważne z faktem, że:\[\lim\limits_{n\to \infty} a_n b_n=0\]8. Twierdzenie o dwóch ciągachPrzy liczeniu granic niewłaściwych, w których występują ciągi ograniczone z dołu (lub z góry) przez inne ciągi oraz ciągi, których granice nie istnieją, przydatne jest czasami twierdzenie o 2 ciągch:Jeżeli ciągi \((a_n)\) i \((b_n)\) spełniają warunki:\[a_n\le b_n,\,\,\,dla\,\,\,n>n_0\]oraz\[\lim\limits_{n\to \infty}a_n=\infty\]to\[\lim\limits_{n\to \infty}b_n=\infty\]UWAGA: Prawdziwe jest też analogiczne twierdzenie dla granicy niewłaściwej ciągu równej \(-\infty\).PrzykładKorzystając z twierdzenia o dwóch ciągch uzasadnimy, że:\[\lim\limits_{n\to \infty}(\sin n+e^n)=\infty\]Następująca nierówność jest prawdziwa dla wszystkich \(n\in\mathbb{N}\):\[-1+e^n\le \sin n+e^n\]ponieważ \(\sin n\ge -1\) dla wszystkich \(n\in\mathbb{N}\).Mamy:\[\lim\limits_{n\to \infty}(-1+e^n)=\infty\]Zatem z twierdzenia o dwóch ciągch \(\lim\limits_{n\to \infty}(\sin n+e^n)=\infty\).9. Symbole nieoznaczonelub wyrażenia nieoznaczone, to wyrażenia umowne, które stosuje się przy liczeniu granic ciągu, np. gdy licznik i mianownik zbiegają do zera, tak jak w granicy:\[\lim\limits_{n\to \infty}\frac{\sin \frac{1}{n}}{\frac{1}{n}}=\left[\frac{0}{0}\right]\]Oto pełna lista 7 symboli nieoznaczonych:\[\left[\frac{0}{0}\right],\,\,\,\left[\frac{\infty}{\infty}\right],\,\,\,[\infty-\infty],\,\,\,[0\cdot \infty],\,\,\,\left[1^{\infty}\right],\,\,\,\left[\infty^{0}\right],\,\,\,\left[0^{0}\right]\]Zapamiętaj, że wyrażenia nieoznaczone nie mają znaczenia liczbowego, bo np, nie można dzielić przez 0, a nieskończoność \(\infty\) to nie liczba tylko obiekt tych wyrażeń są różne w przypadku różnych Z symbolami nieoznaczonymi trzeba bardzo uważać. Zwykle:\[\left[\frac{0}{0}\right]\neq 1\]\[\left[\frac{\infty}{\infty}\right]\neq 1\]\[[\infty-\infty]\neq 0\]\[[0\cdot \infty]\neq 0\]\[\big[1^{\infty}\big]\neq 1\]\[\big[\infty^0\big]\neq 1\]\[\big[0^0\big]\neq 1\]Nie możesz stosować tu żadnych regułek wyuczonych na pamięć (każdy z tych symoli może dać różne wyniki)!Jeszcze jedno, symbolami nieoznaczonymi nie są wyrażenia typu:\[\left[\frac{A}{\infty}\right],\,\,\textrm{dla}\,A\in\mathbb{R},\,\,\,[\infty+\infty],\,\,\,[\infty\cdot \infty],\,\,\,\left[\infty^{\infty}\right]\]Wyniki takich granic możesz bez problemu obliczyć (są zawsze takie same):\[\left[\frac{A}{\infty}\right]=0\]\[[\infty+\infty]=\infty\]\[[\infty\cdot \infty]=\infty\]\[\left[\infty^{\infty}\right]=\infty\] Jak pozbyć się symboli nieoznaczonych?Bardzo często wystarczy wykonać proste przekształcenie, dzięki któremu można łatwo pozbyć się symbolu nieoznaczonego z granicy ciągu:1. Spróbuj wyciągnąć \(n\) do najwyższej potęgi przed nawias (jeśli liczysz granicę z ilorazu ciągów, to wyciągnij najwyższą potęgę w liczniku i mianowniku i skróć co się da).2. Jeśli liczysz granicę z ilorazu ciągów, to zastosuj rozkład na czynniki lub zastosuj wzór skróconego mnożenia w liczniku i mianowniku, następnie skróć co się wynosi granica ciągu \(\frac{n^2-1}{n-1}\)?Sposób IWyciągniemy n do najwyższej potęgi z licznika i mianownika. W tym przypadku najwyższa potęga to 2, więc wyciągniemy \(n^2\):\[\lim\limits_{n\to \infty} \frac{n^2-1}{n-1}=\left[\frac{\infty}{\infty}\right]=\lim\limits_{n\to \infty}\frac{n^2\left(1-\frac{1}{n^2}\right)}{n^2\left(\frac{1}{n}-\frac{1}{n^2}\right)}=\lim\limits_{n\to \infty}\frac{1-\frac{1}{n^2}}{\frac{1}{n}-\frac{1}{n^2}}=\left[\frac{1}{0^+}\right]=+\infty\]Sposób IIUżyjemy wzoru skróconego mnożenia na różnicę kwadratów \(a^2-b^2=(a-b)(a+b)\):\[\lim\limits_{n\to \infty} \frac{n^2-1}{n-1}=\left[\frac{\infty}{\infty}\right]=\lim\limits_{n\to \infty}\frac{(n-1)(n+1)}{n-1}=\lim\limits_{n\to \infty}(n+1)=+\infty\]10. Jak liczyć granice niewłaściwe ciągów?1. Granica z wyrażenia: liczba + "nieskończoność" = "nieskończoność"\[\color{red}{g+\infty=\infty+g=\infty},\,\,\,gdy\,\,\,-\inftyinfInne przykłady:Granicę ciągu\(\lim\limits_{n\to \infty}\frac{n^2+1}{\sin(n)+2n}\)wpiszesz za pomocą polecenialim (n^2+1)/(sinn+2n) as n->infGranicę ciągu\(\lim\limits_{n\to \infty}\frac{\ln n}{n+1}\)wpiszesz za pomocą polecenialim lnn/(n+1) as n->inf12. Sprawdź swoją wiedzę o ciągach liczbowych - zadania kontrolne1. O ciągu \(a_n\) wiadomo, że\[3\le a_n \le 4,\,\,\,\textrm{dla każdego}\,n\in\mathbb{N}\]Czy ciąg \(a_n\) jest ograniczony z dołu, z góry, a może jest ograniczony?Z definicji ograniczoności ciągu liczbowego wynika, że ciąg \(a_n\) jest:(a) ograniczony z dołu, ponieważ istnieje liczba \(D=3\), taka, że:\[a_n \ge 3=D,\,\,\,\textrm{dla każdego}\,n\in\mathbb{N}\](a) ograniczony z góry, ponieważ istnieje liczba \(G=4\), taka, że:\[a_n \le 4=G,\,\,\,\textrm{dla każdego}\,n\in\mathbb{N}\](c) ograniczony, ponieważ jest ograniczony z dołu i z Ciąg \(a_n\) jest utworzony przez liczby nieparzyste. Czy ten ciąg jest monotoniczny?Zacznijmy od wypisania kilku wyrazów ciągu \(a_n\):\[a_1=1,\,\,a_2=3,\,\,a_3=5,\,\,a_4=7,\,\,a_5=9,...\]Na pierwszy rzut oka wygląda na to, że ciąg \(a_n\) stale rośnie... Aby to wykazać, spróbujmy zapisać wzór opisujący wyrazy ciągu liczb nieparzystych (szukamy zeleżności między wypisanymi powyżej wyrazami ciągu). Ten wzór to (sprawdź!):\[a_n=2n-1\]Zauważmy teraz, że:\[a_{n+1}=2(n+1)-1=2n+1>2n-1=a_n,\,\textrm{dla każdego}\,n\in\mathbb{N}\]co potwierdza nasze wcześniejsze domysły, że ciąg liczb naturalnych, nieparzystych jest ściśle rosnący (a więc monotoniczny).3. Oblicz granicę ciągu\[\lim\limits_{n\to \infty} \left(\frac{1}{n}\right)^{\frac{1}{n}}\]Skorzystamy z własności potęg (ze wzorów \(\left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}\) oraz \(\sqrt[n]{a}=a^{\frac{1}{n}}\)), z własności granic ciągów (granica ilorazu jest ilorazem granic) oraz z podstawowego wzoru na granicę ciągu \(\lim\limits_{n\to \infty}\sqrt[n]{n}=1\):\[\lim\limits_{n\to \infty} \left(\frac{1}{n}\right)^{\frac{1}{n}}=\lim\limits_{n\to \infty} \frac{1}{n^{\frac{1}{n}}}=\lim\limits_{n\to \infty}\frac{1}{\sqrt[n]{n}}=\frac{1}{\lim\limits_{n\to\infty}\sqrt[n]{n}}=\frac{1}{1}=1\]4. Oblicz granicę ciągu\[\lim\limits_{n\to \infty} \frac{(-1)^n}{n}\]Zastosujemy twierdzenie o trzech ciągach. Zauważmy, że:\[\frac{-1}{n}\le \frac{(-1)^n}{n}\le \frac{1}{n}\]ponieważ \(-1\le (-1)^n\le 1\) (przyjmuje na przemian wartości 1 i -1). Ponadto:\[\lim\limits_{n\to \infty} \frac{-1}{n}=\lim\limits_{n\to \infty} \frac{1}{n}=0\]Zatem na mocy twierdzenia o 3 ciągach:\[\lim\limits_{n\to \infty} \frac{(-1)^n}{n}=0\]Zrób kolejny krok i ucz się granic ciągów na przykładach
Obliczyć granice funki: lim x−> 1 = lnx/x−1 i tu znowu podobny problem umiem liczyć granice, ale kiedy pojawiają sie logarytmy nie wiem co z tym robić 3. dana jest funkcja f(x) = −x/x 2 +1 i nalezy obliczyć a) dziedzinę b) pochodną c) monotoniczność d) extrema lokalne 4.obliczyć całkę oznaczoną ( na górze znaku całki 0 na
W tym temacie zamieszczane będą przykładowe rozwiązania zadań, w których należy obliczyć granicę ciągu. Przykłady staram się dobierać w taki sposób, aby pokazać metodę rozwiązywania wszystkich typowych rodzajów granic. W razie dostrzeżenia braków, bądź jakichś błędów (które z pewnością zostały gdzieś niezauważone) proszę pisać do mnie prywatne wiadomości. W przykładach wykorzystywane są poniższe twierdzenia dotyczące granic. Dowody większej części z nich można znaleźć na forum w dziale kompendium analizy. Uwaga: sformułowania niektórych twierdzeń mają charakter nieformalny. \(\displaystyle{ \mbox{TW. 1 (arytmetyka granic)}}\) Niech \(\displaystyle{ a_n}\) i \(\displaystyle{ b_n}\) będą ciągami liczb rzeczywistych takimi, że \(\displaystyle{ \lim_{ n\to \infty }a_n=a}\) oraz \(\displaystyle{ \lim_{ n\to \infty }b_n=b}\). Wtedy zachodzą poniższe równości: \(\displaystyle{ \lim_{n \to \infty } (a_n+b_n)=a+b}\) \(\displaystyle{ \lim_{n \to \infty } (a_n-b_n)=a-b}\) \(\displaystyle{ \lim_{n \to \infty } (a_n \cdot b_n)=a \cdot b}\) \(\displaystyle{ \lim_{n \to \infty }\left ( \frac{a_n}{b_n} \right)= \frac{a}{b}}\) \(\displaystyle{ \lim_{n \to \infty } (a_n ^{ b_n})=a ^ b}\) O ile odpowiednie działania są wykonalne i nie prowadzą do symboli nieoznaczonych. \(\displaystyle{ \mbox{TW. 2 (o iloczynie ciągu zbieżnego do zera i ograniczonego)}}\) Jeśli \(\displaystyle{ a_n}\) jest ciągiem zbieżnym do zera, a wyrazy ciągu \(\displaystyle{ b_n}\) są ograniczone (to znaczy, istnieje stała \(\displaystyle{ M}\), taka że \(\displaystyle{ \forall_{n\in \mathbb{N}}. |b_n|0}\) \(\displaystyle{ \mbox{(2') } \lim_{ n\to \infty } n^a= \infty \mbox{ dla }a>0}\) \(\displaystyle{ \mbox{(3) } \lim_{ n\to \infty } q^n=0 \mbox{ dla }|q|1}\) \(\displaystyle{ \mbox{(4) } \lim_{ n\to \infty } \sqrt[n]{a} =1 \mbox{ dla } a>0}\) \(\displaystyle{ \mbox{(5) } \lim_{ n\to \infty } \sqrt[n]{n} =1}\) \(\displaystyle{ \mbox{(6) } \lim_{ n\to \infty } \left( 1+ \frac{1}{n} \right)^n =e}\) \(\displaystyle{ \mbox{TW. 11}}\) Załóżmy, że ciąg \(\displaystyle{ a_n}\) o niezerowych wyrazach spełnia: \(\displaystyle{ \lim_{n \to \infty } \frac{|a_{n+1}|}{|a_n|}=g}\), wtedy \(\displaystyle{ \lim_{n \to \infty } \sqrt[n]{|a_n|}=g}\) Przykłady obliczania granic: (aby zobaczyć rozwiązanie, należy kliknąć na "Pokaż") \(\displaystyle{ \mbox{1. }a_n= \frac{n}{n+1}}\) \(\displaystyle{ \mbox{2. }a_n= \frac{n^2-1}{3-n^3}}\) \(\displaystyle{ \mbox{3. }a_n= \frac{4n^3-2n}{n^3-n^2+1}}\) \(\displaystyle{ \mbox{4. }a_n=\sqrt{\frac{9n^2-3}{4n^2+1}}}\) \(\displaystyle{ \mbox{5. }a_n= \left( \frac{5n-2}{3n-1} \right)^3}\) \(\displaystyle{ \mbox{6. }a_n=\frac{2^n+7^n}{4^n-3\cdot 7^n}}\) \(\displaystyle{ \mbox{7. }a_n= \sqrt{n^2+n}-n}\) \(\displaystyle{ \mbox{8. }a_n= \sqrt[3]{n^3+4n^2}-n}\) \(\displaystyle{ \mbox{9. }a_n= \frac{3\cdot 2^{2n}+1}{4^{n+1}}}\) \(\displaystyle{ \mbox{10. }a_n= \frac{n}{2^n}}\) \(\displaystyle{ \mbox{11. }a_n= \frac{n^k}{q^n}}\) dla \(\displaystyle{ q>1}\), \(\displaystyle{ k>0}\) \(\displaystyle{ \mbox{12. }a_n= \frac{c^n}{n!}}\) dla dowolnego \(\displaystyle{ c>0}\) \(\displaystyle{ \mbox{13. }a_n= \frac{\cos \left(n^2\right)}{n-5}}\) \(\displaystyle{ \mbox{14. }a_n= \sqrt[n]{n^2}}\) \(\displaystyle{ \mbox{15. }a_n=\sqrt[n]{n^5+4n^3+3n-2}}\) \(\displaystyle{ \mbox{16. }a_n= \sqrt[n]{3^n+4^n+5^n}}\) \(\displaystyle{ \mbox{17. }a_n= \sqrt[n]{10^{100}}- \sqrt[n]{ \frac{1}{10^{100}} }}\) \(\displaystyle{ \mbox{18. }a_n= \frac{1+2+3+...+n}{n^2}}\) \(\displaystyle{ \mbox{19. }a_n= \frac{1+ \frac{1}{2}+ \frac{1}{4}+...+ \frac{1}{2^n} }{1+ \frac{1}{3}+ \frac{1}{9}+...+ \frac{1}{3^n} }}\) \(\displaystyle{ \mbox{20. }a_n= \left( \frac{n+5}{n} \right)^n}\) \(\displaystyle{ \mbox{21. }a_n= \left( \frac{n^2+2}{2n^2+1} \right)^{n^2}}\) \(\displaystyle{ \mbox{22. }a_n= \left(1+\sin \frac{1}{n} \right)^n}\) \(\displaystyle{ \mbox{23. }a_n=n\left(\ln\left(n+1\right)-\ln n\right)}\) \(\displaystyle{ \mbox{24. }a_n= \frac{1}{n^2+1}+ \frac{ \sqrt{2} }{n^2+2}+ \frac{ \sqrt{3} }{n^2+3}+...+ \frac{ \sqrt{n} }{n^2+n}}\) \(\displaystyle{ \mbox{25. }a_n= \frac{1}{1 \cdot 2}+ \frac{1}{2 \cdot 3}+...+ \frac{1}{n \cdot \left(n+1\right)}}\) \(\displaystyle{ \mbox{26*. }a_n=\sin \left(\pi \sqrt[3]{8n^3-2n^2+7}\right)}\) \(\displaystyle{ \mbox{27. }a_n= \left( 1- \frac{1}{n^2} \right)^n}\) \(\displaystyle{ \mbox{28. }a_n= \frac{n}{\sqrt[n]{n!}}}\) \(\displaystyle{ \mbox{29. Ciąg zadany rekurencyjnie przez:}\\\\ a_1=\sqrt{2}\\\\ a_{n+1}= \sqrt{2+a_n}}\) \(\displaystyle{ \mbox{30. }a_n=\frac{\left(3n-1\right)!+\left(3n+1\right)!}{\left(3n\right)!\left(n-1\right)}}\) Powyższe przykłady pochodzą po części z książki: W. Krysicki, L. Włodarski: "Analiza matematyczna w zadaniach".
Teraz będziemy liczyć granicę naszego wyrażenia. Wyciągamy przed nawias w liczniku i mianowniku ułamka "n" w najwyższej potędze mianownika, a zatem "n²": Przeanalizujmy teraz do czego dąży licznik, jak i mianownik: Gdy n→+∞, to: Dla licznika; Dla mianownika; Możemy zatem zapisać, że: Podsumowując: Często podczas rozwiązywania zadań z granicy ciągów trzeba skorzystać z definicji. Definicja Stałą liczbę \(g\) nazywamy granicą ciągu (\(a_n\)), jeżeli dla każdego dodatniego, dowolnie małego \(\epsilon\), istnieje taka liczba \(N\), że wszystkie wartości \(a_n\) o wskaźniku \(n \gt N\) spełniają nierówność: \[|a_n - g|\lt \epsilon \]
to jest zapewne banalnie proste.. ale dopiero zaczynamy granice ciągu i nie za bardzo wiem jak sie zabrać do tych przykładów: Wykaż bezpośrednio z definicji, że Matematyka.pl Forum matematyczne: miliony postów, setki tysięcy tematów, dziesiątki tysięcy użytkowników - pomożemy rozwiązać każde zadanie z matematyki
Granica ciągu - stałą liczbę g nazywa się granicą ciągu an, jeżeli dla każdego dodatniego dowolnie małego ϵ istnieje liczba N, dla której wszystkie wartości an o wskaźniku n > N spełniają nierówność: |an - g| < ϵ funkcja f (x) ma granicę w punkcie x0 Przykład 1. Oblicz: \(\lim\limits_{x \to \infty} \frac{1}{n}+2\) w związku z tym, że n \(\rightarrow \infty\) to widzimy, że podstawiając coraz większe wartości za n \(\lim\limits_{x \to \infty} \frac{1}{n}+2=0+2\) Twierdzenie o ciągach zbieżnych: każdy ciąg stały czyli taki, którego wszystkie wyrazy są równe pewnej liczbie x jest zbieżny a jego granica \(\lim\limits_{x \to \infty} x=x\) ciąg zbieżny jest zawsze ograniczony, jednak w odwrotną stronę nie zawsze jest to prawdziwe np w przypadku ciągów naprzemiennych granicą każdego podciągu ciągu zbieżnego jest granica tego ciągu jeżeli \(\lim\limits_{n \to \infty} x_n=x\) oraz \(\lim\limits_{n \to \infty} y_n=y\) to istnieją takie zależności \(\lim\limits_{n \to \infty} ( x_n \pm y_n)=x \pm y\) \(\lim\limits_{n \to \infty} ( x_n * y_n)=x * y\) \(\lim\limits_{n \to \infty} \frac{a_n}{b_n}=\frac{a}{b}\) Granica ciągu: "nieskończoność" do potęgi liczba = "nieskończoność", gdy liczba jest dodatnia. ∞g = ∞,gdy0 < g ≤ ∞∞g = ∞, gdy 0 < g ≤ ∞. Zadanie 32 - Oblicz granicę ciągu liczbowego. Zobacz rozwiązania krok po kroku kilkudziesięciu przykładów z granic ciągów. Definicja Niech f(x) oznacza funkcję, która jest określona w przedziale .Funkcja f(x) ma w punkcie x0 granicę lewostronną g (używamy zapisu ) jeżeli dla każdego ciągu argumentów (xn) o wyrazach należących do przedziału zbieżnego do x0, ciąg wartości (f(xn)) jest zbieżny do g. Definicja Niech f(x) oznacza funkcję, która jest określona w przedziale .Funkcja f(x) ma w punkcie x0 granicę prawostronną g (używamy zapisu ) jeżeli dla każdego ciągu argumentów (xn) o wyrazach należących do przedziału zbieżnego do x0, ciąg wartości (f(xn)) jest zbieżny do g. Twierdzenie Funkcja f(x) ma w punkcie x0 granicę, jeżeli istnieje lewostronna i prawostronna granica funkcji w punkcie x0 i granice te są równe. Poniższy rysunek ilustruje różnicę między granicą prawostronną i lewostronną: Funkcja przedstawiona na rysunku ma różne granice lewostronną i prawostronną, więc w punkcie x0 nie posiada granicy. Przykład Obliczyć granicę lewostronną i prawostronną funkcji: w punkcie równym Obliczamy granicę lewostronną: Wyjaśnienia wymaga zapis w nawiasach kwadratowych. Zapis 0 - w nawiasie kwadratowym oznacza, że (x) jest zbieżne do zera i przyjmuje ujemne wartości. Zapis 0+ w nawiasie kwadratowym oznacza, że (x) jest zbieżne do zera i przyjmuje dodatnie zapis ułatwia rachunek granic. Przyjrzyjmy się granicy prawostronnej. Zgodnie z definicją bierzemy pod uwagę ciąg wartości funkcji (xn) o wyrazach większych od zera, czyli należących do przedziału (0;a), który jest zbieżny do zera. Granica funkcji prawostronna będzie równa granicy ciągu wartości funkcji: Wszystkie wyrazy ciągu argumentów są dodatnie zgodnie z założeniem, ciąg argumentów jest zbieżny do zera, więc ma tu zastosowanie następujące twierdzenie, zgodnie z którym powyższa granica jest równa plus nieskończoności. Zapis z nawiasami kwadratowymi upraszcza całe z rozwiązaniamiZadania związane z tematem:Granica lewostronna i prawostronna funkcji Zadanie - granica lewostronna i prawostronnaObliczyć granicę prawostronną i lewostronną funkcjia) w punkcie x0=2b) w punkcie x0=-3Pokaż rozwiązanie zadania Zadanie - granica lewostronna i prawostronneObliczyć granicę prawostronną i lewostronną funkcji:a) w punkcie x0=1b) w punkcie x0=0Pokaż rozwiązanie zadania Zadanie - granica prawostronna i lewostronnaObliczyć granicę prawostronną i lewostronną funkcji w punkcie x0=0Pokaż rozwiązanie zadania Zadanie - granica lewostronna i prawostronnaObliczyć granicę prawostronną i lewostronną funkcji w punkcie x0=-1Pokaż rozwiązanie zadaniaInne zagadnienia z tej lekcjiSąsiedztwo punktuCo to jest sąsiedztwo punktu?Granica funkcjiGranica funkcji w punkcie, podstawowe wzory, obliczanie granic, definicja Heinego oraz Cauchy' niewłaściwa funkcjiCo to jest granica niewłaściwa funkcji i jak ją obliczamy?Granica funkcji w nieskończonościDefinicja granicy funkcji w nieskończoności oraz sposoby obliczania granic wielomianów i funkcji wymiernychTest wiedzySprawdź swoje umiejętności z materiału zawartego w tej lekcji.© 2010-05-12, ART-860 Niektóre treści nie są dostosowane do Twojego profilu. Jeżeli jesteś pełnoletni możesz wyrazić zgodę na przetwarzanie swoich danych osobowych. W ten sposób będziesz miał także wpływ na rozwój naszego serwisu.

Jak przelać pieniądze za granicę szybko? — to warto wiedzieć. Najlepszym rozwiązaniem na szybkie przelanie pieniędzy będzie przelew online. To zdecydowanie najlepszy sposób na wysłanie pieniędzy za granicę. Przelew online można wysłać za pośrednictwem sprawdzonych serwisów transferowych, takich jak Wise czy TransferGo.

Policz znaki w Excelu (spis treści)Policz znaki w ExceluJak liczyć znaki w programie Excel?Policz znaki w Excelu Liczenie znaków w programie Excel jest powszechnie stosowaną metodą w programie Excel, może to wynikać z tego, że mamy pewne granice w programie Excel lub użytkownik może mieć ograniczenie, że niektóre znaki należy wprowadzać tylko w komórkach. Właśnie dlatego musimy zrozumieć, jak policzyć liczbę znaków w komórce. W programie Excel możemy liczyć znaki, korzystając z wbudowanej funkcji programu Excel o nazwie LEN (długość)Funkcja LEN jest wbudowaną funkcją programu Excel, która jest sklasyfikowana jako Ciąg lub tekst. Ta funkcja LEN zwykle służy do zliczania znaków, które zwracają liczbę znaków w ciągu tekstowym. tj. długość określonego funkcji LEN:Tekst: służy do obliczania liczyć znaki w programie Excel? W poniższych przykładach zobaczymy, jak liczyć znaki w programie pobrać szablon Count-Characters-Excel tutaj - Count-Characters-Excel-Template Przykład # 1 - Korzystanie z funkcji LEN Rozważ prosty przykład, w którym mamy listę nazw, w której musimy policzyć liczbę znaków w każdej komórce, która jest pokazana jak korzystać z funkcji LEN, wykonując poniższe użyć funkcji, najpierw wprowadź formułę= LEN (tekst) pokazany na poniższym zrzucie argumentu jest niczym innym jak odpowiednimi danymi, które musimy liczyćW naszym przykładzie zastosuj wzór jako = LEN (A1)Naciśnij klawisz Enter, aby dane wyjściowe były wyświetlane w następujący widać na powyższym zrzucie ekranu, otrzymaliśmy wynik jako „4”.Przeciągnij formułę do wszystkich komórek, aby uzyskać długość określonego ciągu, który pokazano powyższym zrzucie ekranu widać, że dla imienia „JOHN” otrzymaliśmy wynik jako 4, a dla drugiego imienia „Martin Chapel” otrzymaliśmy wynik jako 13. Możemy się zastanawiać, dlaczego otrzymaliśmy wynik jako 13, jeśli sprawdzimy ręcznie jest tylko 12 słów, ale otrzymaliśmy wynik jako 13, ponieważ funkcja LEN liczy również spacje, z tego powodu otrzymaliśmy wynik jako # 2 - Używanie łańcucha i liczb W powyższym przykładzie widzieliśmy, jak liczyć postać za pomocą LEN tylko z String. Teraz w tym przykładzie zobaczymy, jak policzyć znak za pomocą kombinacji zarówno łańcucha, jak i liczb, co pokazano powyższym zrzucie ekranu widzimy, że nieprzetworzone dane zawierają nazwy wraz z liczbami i łańcuchem oraz kombinacją zarówno łańcucha i liczb. Zobaczmy, jak działa funkcja LEN, wykonując poniższą utwórz nową kolumnę jako wynik. Użyj funkcji Len jako = LEN (komórka)W tym przykładzie zastosuj funkcję LEN jako = LEN (A2), aby zwróciła liczbę znaków jako 4, jak pokazano na poniższym zrzucie przeciągnij formułę w dół dla wszystkich komórek. Funkcja LEN liczy nie tylko znaki, ale także liczby i zwraca dokładną powyższym zrzucie ekranu widzimy, że funkcja LEN zwróciła dokładną liczbę dla wszystkich zestawów serii, jak widzimy w 2 rzędzie mamy numeryczną „332-56”, więc funkcja LEN zlicza każdy tekst i zwraca wynik jako „6” i jednocześnie możemy zobaczyć kombinację zarówno ciągu, jak i liczb w komórce „A5”. Również tutaj funkcja LEN zwróciła dokładną liczbę zarówno łańcuchów, jak i # 3 - Korzystanie z wielu funkcji LEN W tym przykładzie zobaczymy, jak używać wielu funkcji LEN do liczenia operatorów arytmetycznych. Rozważ poniższy przykład, który ma kombinację łańcucha i operatora powyższym przykładzie widzimy, że utworzono dwie kolumny, z których jedna służy do zliczania liczby tekstu, a inna kolumna ma zliczać tylko operator arytmetyczny. Aby rozróżnić liczbę zarówno tekstu, jak i operatorów, będziemy pracować w tym przykładzieJak widzieliśmy w powyższym przykładzie funkcja LEN powraca i zlicza znaki wraz ze spacjami. Najpierw zastosujmy tę samą formułę w kolumnie B, która jest pokazana zrzut ekranu pokazuje liczbę znaków, które zastosowaliśmy za pomocą funkcji LEN. Załóżmy, że musimy liczyć tylko operatory arytmetyczne. W takich przypadkach nie możemy zastosować funkcji LEN, ponieważ funkcja LEN policzy cały tekst łącznie ze spacjami i zwróci liczbę zliczeń dla określonych danych. Aby dowiedzieć się, ilu operatorów znajduje się w określonej komórce, wykonaj poniższą proceduręRozważ poniższy przykład, który pokazano użyj funkcji LEN. W kolumnie C wstaw funkcję LEN jak poniżej.= LEN (A2) -LEN (SUBSTITUTE (A2, ”*”, ””))W tej formule LEN użyliśmy funkcji SUBSTITUTE, która zastępuje tekst nowym tekstem w ciągu tekstowymNajpierw użyliśmy funkcji LEN, która zlicza znaki - LEN (SUBSTITUTE (OLD TEXT, NEW TEXT), tzn. Stary tekst jest niczym innym jak komórką A2, a nowy tekst to „*”, aby zastąpił tekst nowym ciągiem co podaliśmy we wzorze i zwraca wynik jako 2, co pokazano przeciągnij formułę w dół, określając nowy otrzymamy następujący jest jak # 4 - Funkcja LEN i SUBSTITUTE W tym przykładzie zobaczymy, jak liczyć określone znaki za pomocą tej samej funkcji LEN i SUBSTITUTE. Rozważ poniższy przykład, który zawiera zdanie „Amazon Big Billion Days Started. Czas na zakupy online ”Na powyższym zrzucie ekranu użyliśmy funkcji LEN do zliczenia liczby znaków. Dokładną liczbę znaków otrzymaliśmy jako 53. Załóżmy, że musimy policzyć, ile „o” jest w użyć tej samej formuły LEN i SUBSTITUTE, aby znaleźć dokładną liczbę, wykonując poniższe krokiKliknij konkretną formułę funkcji LEN jak poniżej= LEN (A9) -LEN (SUBSTITUTE (A9, „o”, ””))Powyższa formuła opisuje, że zastosowaliśmy funkcję LEN do zliczenia znaku - LEN (SUBSTITUTE (STARY TEKST, NOWY TEKST), tzn. Stary tekst jest niczym innym jak komórką A9, a nowy tekst to „o”, gdzie liczy tylko określony tekst, który mamy wspomniano i otrzymaliśmy wynik w następujący do zapamiętania na temat liczenia znaków w programie Excel Podczas korzystania z funkcji LEN upewnij się, że nie używasz spacji, aby uniknąć LEN zlicza i zwraca cały tekst, cokolwiek podaliśmy w artykuły Jest to przewodnik po liczeniu znaków w programie Excel. Tutaj omawiamy sposób korzystania z liczby znaków w programie Excel wraz z praktycznymi przykładami i szablonem Excel do pobrania. Możesz także przejrzeć nasze inne sugerowane artykuły -Funkcja Excel COUNTIFFunkcja LEN w programie ExcelPodstawowe formuły programu ExcelTabela programu Excel
lNJUCr.
  • q94gr7732e.pages.dev/314
  • q94gr7732e.pages.dev/142
  • q94gr7732e.pages.dev/217
  • q94gr7732e.pages.dev/389
  • q94gr7732e.pages.dev/353
  • q94gr7732e.pages.dev/309
  • q94gr7732e.pages.dev/333
  • q94gr7732e.pages.dev/106
  • q94gr7732e.pages.dev/107
  • jak liczyć granice ciągu